Reflections and rotations in R2

Notes

Reflections

  • Consider [latex]A\,\mathbf{x}=\left(\begin{array}{c}1 & 0\\0 & -1\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}x\\-y\end{array}\right)[/latex]. So, matrix A here represents reflection in the x-axis (since the x-coordinate is unchanged, but the y-coordinate changes to –y).
  • Consider [latex]B\,\mathbf{x}=\left(\begin{array}{c}-1 & 0\\0 & 1\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}-x\\y\end{array}\right)[/latex]. So, matrix B here represents reflection in the y-axis (since the x-coordinate changes to –x, but the y-coordinate is unchanged).

Rotations

  • Consider [latex]C\,\mathbf{x}=\left(\begin{array}{c}0 & -1\\1 & 0\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}-y\\x\end{array}\right)[/latex]. So, matrix C here represents a 90 degree rotation counter-clockwise about the origin (since the x-coordinate changes to –y, and the y-coordinate changes to x). See the diagram on the left below.
  • Consider [latex]D\,\mathbf{x}=\left(\begin{array}{c}0 & 1\\-1 & 0\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}y\\-x\end{array}\right)[/latex]. So, matrix D here represents a 90 degree rotation clockwise about the origin (since the x-coordinate changes to y, and the y-coordinate changes to -x). See the diagram on the right below.
90 degree rotations
90 degree rotations about the origin counterclockwise (left) and clockwise (right)
  • Consider a general rotation of [latex]\theta^\circ[/latex] counterclockwise about the origin. We can derive the matrix for this transformation by considering the effects on the standard unit vectors, [latex]\mathbf{e}_1=\left(\begin{array}{c}1\\0\end{array}\right)[/latex] and [latex]\mathbf{e}_2=\left(\begin{array}{c}0\\1\end{array}\right)[/latex]. The point [latex](1, 0)[/latex] rotates to [latex](\cos\theta, \sin\theta)[/latex], while the point [latex](0, 1)[/latex] rotates to [latex](-\sin\theta, \cos\theta)[/latex]: see the diagram below. Therefore the matrix E that represents a rotation of [latex]\theta^\circ[/latex] counterclockwise about the origin is [latex]E=\left(\begin{array}{c}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{array}\right)[/latex].
rotation of theta degrees counterclockwise
Rotation of theta degrees counterclockwise about the origin
  • For example, if [latex]\theta=90^\circ[/latex], then [latex]E=\left(\begin{array}{c}\cos(90) & -\sin(90)\\ \sin(90) & \cos(90)\end{array}\right)=\left(\begin{array}{c}0 & -1\\1 & 0\end{array}\right)[/latex].
  • This technique of figuring out where e1 and e2 go to can be used to derive the matrix for any linear transformation.

Video Tips

Practice Exercises

Drag and drop the matrices below to their correct locations. Some matrices don’t fit anywhere. All rotations are counterclockwise about the origin.

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

A Compendium of Mathematics Problems Copyright © by Iain Pardoe is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book