Notes
Exponent properties
In the following, u and v are variables and m and n are constants (often integers).
1. Product property
[latex]u^m\times u^n=u^{m+n}[/latex]
For example, [latex]u^2\times u^3=u^{2+3}=u^5[/latex]
2. Quotient property
[latex]\frac{u^m}{u^n}=u^{m-n}[/latex]
For example, [latex]\frac{u^5}{u^3}=u^{5-3}=u^2[/latex]
3. Power of a power property
[latex](u^m)^n=u^{mn}[/latex]
For example, [latex](u^2)^3=u^{2\times 3}=u^6[/latex]
4. Power of a product property
[latex](uv)^m=u^mv^m[/latex]
For example, [latex](uv)^2=u^2v^2[/latex]
5. Power of a quotient property
[latex]\left(\frac{u}{v}\right)^m=\frac{u^m}{v^m}[/latex]
For example, [latex]\left(\frac{u}{v}\right)^2=\frac{u^2}{v^2}[/latex]
6. Negative exponent property
[latex]u^{-m}=\frac{1}{u^m}[/latex]
For example, [latex]u^{-2}=\frac{1}{u^2}[/latex]
7. Reciprocal exponent property
[latex]u^\frac{1}{n}=\sqrt[n]{u}[/latex]
For example, [latex]u^\frac{1}{3}=\sqrt[3]{u}[/latex]
8. Fractional exponent property
[latex]u^\frac{m}{n}=\sqrt[n]{u^m}[/latex]
For example, [latex]u^\frac{2}{3}=\sqrt[3]{u^2}[/latex]
9. Zero exponent property
[latex]u^0=1[/latex]
Logarithm properties
1. Exponential and logarithm equivalence
The following statements are equivalent:
- [latex]v=b^u[/latex]
- [latex]\log_b(v)=u[/latex]
2. Inverse property
- [latex]\log_b(b^u)=u[/latex]
- [latex]b^{\log_b(u)}=u[/latex]
3. Exponent property
[latex]\log_b(u^m)=m\log_b(u)[/latex]
For example, [latex]\log_b(u^2)=2\log_b(u)[/latex]
4. Sum property
[latex]\log_b(u)+\log_b(v)=\log_b(uv)[/latex]
5. Difference property
[latex]\log_b(u)-\log_b(v)=\log_b\left(\frac{u}{v}\right)[/latex]
6. Log of one property
[latex]\log_b(1)=0[/latex]
7. Log of the base property
[latex]\log_b(b)=1[/latex]
Video Tips
Practice Exercises